初一上册数学教学计划

时间:2024-07-10 22:59:58
初一上册数学教学计划范文汇总7篇

初一上册数学教学计划范文汇总7篇

日子如同白驹过隙,我们又将续写新的诗篇,展开新的旅程,是时候抽出时间写写计划了。我们该怎么拟定计划呢?下面是小编精心整理的初一上册数学教学计划7篇,仅供参考,大家一起来看看吧。

初一上册数学教学计划 篇1

一、设计理念

学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学,始终给学生创造自由发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,而是把重点放在教学情境的设计上。本节教学以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生在老师的指导下主动学习。

二、教学目标

1.认知目标

理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

2.能力目标

(1)使学生能够灵活地进行乘方运算。

(2)通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

3.情感目标

(1)通过对实例的讲解,让学生体会数学与生活的密切联系。

(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

三、教学重点、难点

1.教学重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则。

2.教学难点:正确理解各种概念并合理运算。

四、教学方法

引导探索,尝试指导,充分体现学生的主体地位。

五、教学过程:

创设情境——探求新知

棋盘上的数学

古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”

设计意图:

通过创设故事和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。

猜想第64格的米粒是多少?

第1格: 1

第2格: 2

第3格: 4=2×2=22

第4格: 8=2 ×2 ×2=23

第5格: 16= 2 ×2 ×2 ×2=24

……

63个2

第64格=2×2×······×2=263

二、乘方的意义

乘方:求n个相同因数a的积的运算叫做乘方an读作a的n次幂(或a的n次方)。其中a是底数,n是指数。

(设计意图):

通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳和概括的能力,让学生在活动中感受数学符号的简捷美。

初一上册数学教学计划 篇2

(一)教材所处的地位

人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

(二)单元教学目标

(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。

(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。

(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

(三)单元教学的重难点

(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。

(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。

(四)单元教学思路及策略

(1)注意与小学相关内容的衔接。

(2)加强与实际的联系。

(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。

(4)抓住重难点、加强练习。

(五)学生学习易错点分析:

(1)忽视单项式的定义,误认为式子 是单项式。

(2)忽视单项式系数的定义,误认为 的系数是4.

(3)忽视单项式的次数的定义,误认为3a的次数是0.

(4)忽视多项式的定义,误认为 是单项式。

(5)忽视多项式的定义,误认为 的次数是7.

(6)忽视多项式的项的定义,误认为多项式 的项分别为 .

(7)把多项式的各项重新排列时,忽视要带它前面的符号。

(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。

(9)合并同类项时,误把字母的指数也相加。

(10) 去括号时符号的处理。

(11)两整式相减时,忽略加括号。

(六)新教材和原教材的知识体系区别:

原教材:

新教材:

由图表可以知道新旧教材一些不同的地方:

用字母表示数的教学;

旧教材大概用三个课时完成“列代数式”的学习,而我们新教材淡化了“代数式”的概念,用小半节课回顾小学学过的用字母表示数的知识,然后直接引入单项式的概念,对于生源不太好的学校,用字母表示数的掌握可能要花多一点的时间教学。

添括号的知识;

新教材直接把这方面的知识删除,我觉得我们学校可以适当补充。

升降幂排列。

新教材是在讨论合并同类项时,以一个旁注的方式给出,我认为这个知识点还是有必要详细讲解。

(4)新教材增加“数学活动”。我们可以通过课件或者学生小组动手合作教学,引导学生体会式子比数字更具一般性。

(七)教学建议:

(1)了解整式并学好合并同类项的关键是什么?

整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同 ……此处隐藏8495个字……程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。

四、教学过程设计

问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。

问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0。

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3。

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。

教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。

追问2:根据这个规律,下面的两个积应该是什么?

3×(—2)= ,

3×(—3)= 。

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

设计意图:让学生自主构造算式,加深对运算规律的理解。

追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0。

鼓励学生模仿正数乘负数的过程,自己独立得出规律。

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(—1)×3= ,

(—2)×3= ,

(—3)×3= 。

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。

问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(—3)×3= ,

(—3)×2= ,

(—3)×1= ,

(—3)×0= 。

追问1:按照上述规律填空,并说说其中有什么规律?

(—3)×(—1)= ,

(—3)×(—2)= ,

(—3)×(—3)= 。

设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。

追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

学生独立思考、回答。如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。

例1计算:

(1)

;(2)

;(3)

学生独立完成后,全班交流。

教师说明:在(3)中,我们得到了

=1。与以前学习过的倒数概念一样,我们说

与—2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。

追问:在(2)中,8和—8互为相反数。由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘—1之间的关系(反过来有—8=8×(―1))。

例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为—6°C,攀登3km后,气温有什么变化?

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。

小结、布置作业

请同学们带着下列问题回顾本节课的内容:

(1)你能说出有理数乘法法则吗?

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结。

作业:教科书第30页,练习1,2,3;第37页,习题1。4第1题。

五、目标检测设计

1。判断下列运算结果的符号:

(1)5×(—3);

(2)(—3)×3;

(3)(—2)×(—7);

(4)(+0。5)×(+0。7)。

设计意图:检测学生对有理数乘法的符号法则的理解。

2计算:

(1)6×(—9);

(2)(—6)×0。25;

(3)(—0。5)×(—8);

(4)0×(—6);

设计意图:检测学生对有理数乘法法则的理解情况。

《初一上册数学教学计划范文汇总7篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式